李晓

文章来源:药学院 发布时间:2025-12-19浏览次数:

个人工作照


姓名: 李晓

职称: 副主任药师

联系邮箱:lixiao1688@163.com

联系电话:18210590697

研究方向:

1. 临床药学研究;

2. 临床数据分析与模型研究

主要学术任职

中国药理学会治疗药物监测研究专业委员会青年委员

山东省卫生经济协会数字药学专业委员会副主任委员

山东省药学会药师教育与药物信息专委会常务委员

主要获奖情况:

2024年山东医学科技进步青年奖三等奖(第一位)

2023年山东省研究生创新成果奖(指导教师)

2023年山东第一医科大学第一附属医院“十佳教师”

2022、2023年山东第一医科大学第一附属医院“科研标兵”

指导多名研究生取得国家奖学金、山东省研究生创新成果奖、山东省优秀毕业生等

主持科研课题:

1.基于警示结构的药物毒性预测专家系统 国家自然科学基金青年项目 2019.1-2021.12 21万元

2. 基于可解释深度神经网络与治疗药物浓度监测的 CNI 类免疫抑制剂相关急性肾损伤风险预警模型与预防策略研究 国家卫生健康委医药卫生科技发展研究中心 2024.11-2027.10 15万元

近五年代表性论文(限第一作者和通讯作者)

(1) CardioDPi: An explainable deep-learning model for identifying cardiotoxic chemicals targeting hERG, Cav1.2, and Nav1.5 channels. Journal of Hazardous Materials. 2024, 474(5): 134724 (IF=13.6,通讯作者)

(2) BCDPi: An interpretable multitask deep neural network model for predicting chemical bioconcentration in fish. Environmental Research. 2024, 264, 120356 (IF=7.7,通讯作者)

(3) Prediction of Cytochrome P450 Inhibition Using a Deep Learning Approach and Substructure Pattern Recognition. J. Chem. Inf. Model. 2024, 64, 7, 2528-2538 (IF=5.6,通讯作者)

(4) Modeling and insights into the structural characteristics of endocrine-disrupting chemicals. Ecotoxicology and environmental safety, 2023, 263, 115251. (IF=6.2,通讯作者)

(5) Modeling and insights into the structural basis of chemical acute aquatic toxicity. Ecotoxicology and environmental safety, 2022, 242, 113940. (IF=6.2,通讯作者)

(6) Machine Learning Modeling and Insights into the Structural Characteristics of Drug-Induced Neurotoxicity. J. Chem. Inf. Model. 2022, 62, 6035−6045 (IF=5.6,通讯作者)

(7) Modeling and insights into the structural characteristics of druginduced autoimmune diseases. Front. Immunol. 2022, 13:1015409 (IF=5.7,通讯作者)

(8) Modeling and Insights into the Structural Characteristics of Chemical Mitochondrial Toxicity. ACS Omega 2023, 8, 31675−31682 (IF=4.1,通讯作者)

(9) Risk-factor analysis and predictive-model development of acute kidney injury in inpatients administered cefoperazone-sulbactam sodium and mezlocillin-sulbactam sodium: a singlecenter retrospective study. Front. Pharmacol. 2023,14:1170987. (IF=4.4,通讯作者)

(10) In silico prediction of drug-induced nephrotoxicity: current progress and pitfalls, Expert Opinion on Drug Metabolism & Toxicology, 2024. (IF=3.9,通讯作者)

上一篇:周小明

下一篇:陈文斌

版权所有:山东第一医科大学(山东省医学科学院)药学院(药物研究所)   鲁ICP备19027497号-1